Fast numerical algorithm for the linear canonical transform.
نویسندگان
چکیده
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.
منابع مشابه
Fast linear canonical transforms.
The linear canonical transform provides a mathematical model of paraxial propagation though quadratic phase systems. We review the literature on numerical approximation of this transform, including discretization, sampling, and fast algorithms, and identify key results. We then propose a frequency-division fast linear canonical transform algorithm comparable to the Sande-Tukey fast Fourier tran...
متن کاملSampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملFast and accurate algorithm for the computation of complex linear canonical transforms.
A fast and accurate algorithm is developed for the numerical computation of the family of complex linear canonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase systems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to represent paraxial optical systems that involve complex parameters. These include loss...
متن کاملHolographic photopolymer materials and speckle based metrology Materiales holográficos fotopolímeros y metrología basada en speckle
REFERENCIAS Y ENLACES [1] D. P. Kelly, J. T. Sheridan, W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination: Part I. 2-D System analysis”, Opt. Commun. 263, 171-179 (2006). [2] D. P. Kelly, J. T. Sheridan, W. T. Rhodes, “Finite-aperture effects for Fourier transform systems with convergent illumination: Part II. 3-D System analysis”, Opt. Commun. 263...
متن کاملA fast algorithm for the linear canonical transform
In recent years there has been a renewed interest in finding fast algorithms to compute accurately the linear canonical transform (LCT) of a given function. This is driven by the large number of applications of the LCT in optics and signal processing. The well-known integral transforms: Fourier, fractional Fourier, bilateral Laplace and Fresnel transforms are special cases of the LCT. In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2005